Manual

Fundamentally, one function is provided:

sauterschwab_parameterized(integrand, strategy)

The first argument integrand is the parameterized integrand $k'(\chi_\tau(u,v), \chi_t(u',v'))$. That is, it takes as argument two tuples:

integrand((u,v), (u',v'))

The second argument strategy specifies the reparametrization and is one of (the by this package provided) structs:

For triangles

  • CommonFace
  • CommonEdge
  • CommonVertex
  • PositiveDistance

For quadrilaterals

  • CommonFaceQuad
  • CommonEdgeQuad
  • CommonVertexQuad

Each such struct takes one argument specifying the quadrature rule, e.g.,

strategy = CommonEdge(qrule)

where qrule is a vector of (point, weight) tuples for a quadrature on the domain $[0,1]$.

Tip

We recommend the FastGaussQuadrature.jl package. For a Gauss-Legendre quadrature a method is provided that maps to the $[0,1]$ domain:

order = 10
qrule = SauterSchwabQuadrature._legendre(order, 0, 1)